

WEEKLY TEST TARGET JEE - 01 SOLUTION MATHEMATICS 14 JULY 2019

61. (b)
$$(x+3)^n + (x-3)^n = 2[x^n + {}^nC_2x^{n-2}a^2 + {}^nC_4x^{n-4}a^4 + {}^nC_6x^{n-6}a^6 + \dots]$$
Here, $n = 6$, $x = \sqrt{2}$, $a = 1$; ${}^6C_2 = 15$, ${}^6C_4 = 15$, ${}^6C_6 = 1$

$$\therefore (\sqrt{2} + 1)^6(\sqrt{2} - 1)^6 = 2[(\sqrt{2})^6 + 15.(\sqrt{2})^4.1 + 15(\sqrt{2})^2.1 + 1.1]$$

62. (a) As given
$$(1 + ax)^n = 1 + 8x + 24x^2 + ...$$

$$\Rightarrow 1 + \frac{n}{1}ax + \frac{n(n-1)}{1.2}a^2x^2 + ... = 1 + 8x + 24x^2 + ...$$

$$\Rightarrow na = 8, \frac{n(n-1)}{1.2}a^2 = 24 \Rightarrow na(n-1)a = 48$$

$$\Rightarrow 8(8-a) = 48 \Rightarrow 8-a = 6 \Rightarrow a = 2 \Rightarrow n = 4.$$

 $= 2[8 + 15 \times 4 + 15 \times 2 + 1] = 198$

63. (b) We have
$$(1 + x^2)^5 (1 + x)^4$$

$$= (^5C_0 + ^5C_1x^2 + ^5C_2x^4 + ...) (^4C_0 + ^4C_1x + ^4C_2x^2 + ^4C_3x^3 + ^4C_4x^4)$$
So coefficient of x^5 in $[(1 + x^2)^5 (1 + x)^4]$

$$= {^5C_2} \cdot ^4C_1 + ^4C_3 \cdot ^5C_1 = 60.$$

64. (b)
$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{2\left[1-\frac{x}{4}\right]^{1/2}}$$

$$= \frac{\left[1+\frac{1}{2}(-3x)+\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{2}(-3x)^2 + \dots\right] + \left[1+\frac{5}{3}(-x)+\frac{5}{3}\frac{2}{3}\frac{1}{2}(-x)^2 + \dots\right]}{2\left[1+\frac{1}{2}\left(-\frac{x}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{2}\left(-\frac{x}{4}\right)^2 + \dots\right]}$$

$$= \frac{\left[1-\frac{19}{12}x+\frac{53}{144}x^2 - \dots\right]}{\left[1-\frac{x}{2}-\frac{1}{8}x^2 - \dots\right]} = 1-\frac{35}{24}x + \dots$$

Neglecting higher powers of x, then
$$a + bx = 1 - \frac{35}{24}x \Rightarrow a = 1, b = -\frac{35}{24}$$
.

65. (a)
$$T_3 = {}^5C_2.x^2(x^{\log_{10}x})^3 = 10^6$$

Put ${}^5C_2 = 10$ [: $\log_{10} 10 = 1$].
If $x = 10$, then $10^3.10^{2.1} = 10^5$ is satisfied.
Hence $x = 10$.

66. (c) Since
$$(n+2)^{th}$$
 term is the middle term in the expansion of $(1+x)^{2n+2}$, therefore $p={}^{2n+2}C_{n+1}$.
Since $(n+1)^{th}$ and $(n+2)^{th}$ terms are middle terms in the expansion of $(1+x)^{2n+1}$, therefore $q={}^{2n+1}C_n$ and $r={}^{2n+1}C_{n+1}$ But ${}^{2n+1}C_n+{}^{2n+1}C_{n+1}={}^{2n+2}C_{n+1}$
 $\therefore q+r=p$

67. (b)
$$(x-1)(x-2)(x-3)....(x-100)$$

Number of terms = 100;
 \therefore Coefficient of $x^{99} = (x-1)(x-2)(x-3)...(x-100)$
= $(-1-2-3-.....-100) = -(1+2+.....+100)$
= $-\frac{100\times101}{2} = -5050$.

68. (a)
$$T_{r+1} = {}^{200}C_r(1){}^{200-r}.(x)^r$$

Hence coefficient of $x^{100} = {}^{200}C_{100} = \begin{pmatrix} 200\\100 \end{pmatrix}$.

69. (a) In the expansion of $\left(ax^2 + \frac{1}{hx}\right)^{11}$, the general term is $T_{r+1} = {}^{11}C_r(ax^2)^{11-r}\left(\frac{1}{hx}\right)^r = {}^{11}C_ra^{11-r}\frac{1}{h^r}x^{22-3r}$

For x^7 , we must have $22 - 3r = 7 \Rightarrow r = 5$, and the coefficient of $x^7 = {}^{11}C_5.a^{11-5}\frac{1}{h^5} = {}^{11}C_5\frac{a^6}{h^5}$

Similarly, in the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, the general term is $T_{r+1} = {}^{11}C_r(-1)^r \frac{a^{11-r}}{b^r} \cdot x^{11-3r}$

For x^{-7} we must have, $11 - 3r = -7 \Rightarrow r = 6$, and the coefficient of x^{-7} is ${}^{11}C_6 \frac{a^5}{\kappa^6} = {}^{11}C_5 \frac{a^5}{\kappa^6}$

As given, $^{11}C_5 \frac{a^6}{h^5} = ^{11}C_5 \frac{a^5}{h^6} \Rightarrow ab = 1$.

70. (c) $T_{r+1} = {}^{5}C_{r}(x^{2})^{5-r} \left(\frac{k}{x}\right)^{r}$

For coefficient of x, $10 - 2r - r = 1 \implies r = 3$

Hence,
$$T_{3+1} = {}^{5}C_{3}(x^{2})^{5-3} \left(\frac{k}{x}\right)^{3}$$

According to question, $10k^3 = 270 \Rightarrow k = 3$.

71. (a) Let the coefficient of three consecutive terms i.e. $(r+1)^{th}$, $(r+2)^{th}$, $(r+3)^{th}$ in expansion of $(1+x)^n$ are 165,330 and 462 respectively then, coefficient of $(r+1)^{th}$ term $= {}^{n}C_{r} = 165$

Coefficient of $(r + 2)^{th}$ term $= {}^{n}C_{r+1} = 330$ and

Coefficient of $(r + 3)^{th}$ term $= {}^{n}C_{r+2} = 462$

$$\therefore \frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1} = 2$$

or
$$n-r=2(r+1)$$
 or $r=\frac{1}{3}(n-2)$

and
$$\frac{{}^{n}C_{r+2}}{{}^{n}C_{r+1}} = \frac{n-r-1}{r+2} = \frac{231}{165}$$

or $165(n-r-1) = 231(r+2)$ or $165n-627 = 396r$

or
$$165(n-r-1) = 231(r+2)$$
 or $165n-627 = 396r$

or
$$165n - 627 = 396 \times \frac{1}{3} \times (n-2)$$

or
$$165n - 627 = 132(n-2)$$
 or $n = 11$.

72. (d)
$$^{18}C_{2r+3} = ^{18}C_{r-3} \Rightarrow 2r+3+r-3=18 \Rightarrow r=6$$

73. (d) Middle term of $(1+x)^{2n}$ is $T_{n+1} = {}^{2n}C_nx^n$

$$= \frac{(2n)!}{n!} x^n = \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{n!} 2^n x^n.$$

74. (b) $(1-x)^{30} = {}^{30}C_0x^0 - {}^{30}C_1x^1 + {}^{30}C_2x^2$

+ +
$$(-1)^{30} {}^{30}C_{30}x^{30}$$
(i)

$$(x+1)^{30} = {}^{30}C_0x^{30} + {}^{30}C_1x^{29} + {}^{30}C_2x^{28}$$

+..... +
$${}^{30}C_{10}X^{20}$$
 +.... + ${}^{30}C_{30}X^{0}$ (ii)

Multiplying (i) and (ii) and equating the coefficient of x^{20} on both sides, we get required sum = coefficient of x^{20} in $(1 - x^2)^{30} = {}^{30}C_{10}$. 75. (c) $(1 + 3x + 3x^2 + x^3)^6 = {(1 + x)^3}^6 = {(1 + x)^{18}}$

Hence the middle term is 10^{th} .

76. (c) Middle term of $\left(x - \frac{1}{x}\right)^{11}$ is $T_6 = {}^{11}C_5(x)^6 \left(-\frac{1}{x}\right)^5 = -462x$

and
$$T_7 = {}^{11}C_6(x)^5 \left(-\frac{1}{x}\right)^6 = \frac{462}{x}$$

77. (d) $(9-r)\left(-\frac{1}{6}\right)+r\left(\frac{1}{3}\right)=0 \Rightarrow r=3$

 $= {}^{9}C_{2}(v^{-1/6})^{6}(-v^{1/3})^{3} = -84$

78. (c) The general term in the expansion of
$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$
 is $T_{r+1} = {}^9C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^{r}$

$$= {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right) x^{18-3r}$$

Now, the coefficient of the term independent of x in the expansion of $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ (ii)

= Sum of the coefficient of the terms x^0 , x^{-1} and x^{-3} in $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$.

For x^0 in (i) above, $18 - 3r = 0 \Rightarrow r = 6$. For x^{-1} in (i) above, there exists no value of r and hence no such term exists. For x^{-3} in (i), $18 - 3r = -3 \Rightarrow r = 7$

 \therefore For term independent of x, in (ii) the coefficient

$$= 1 \times {}^{9}C_{6}(-1)^{6} \left(\frac{3}{2}\right)^{9-6} \left(\frac{1}{3}\right)^{6} + 2 \times {}^{9}C_{7}(-1)^{7} \left(\frac{3}{2}\right)^{9-7} \left(\frac{1}{3}\right)^{7}$$

$$= \frac{9.8.7}{1.2.3} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}} + 2\frac{9.8}{1.2}(-1)\frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}} = \frac{7}{18} - \frac{2}{27} = \frac{17}{54}$$

79. (b) Accordingly,
$$(\sqrt{x})^{10-r} \left(\frac{1}{x^2}\right)^r = x^0 \Rightarrow r = 2$$
Hence the term is ${}^{10}C_2 \left(\frac{1}{\sqrt{3}}\right)^8$. $(\sqrt{3})^2 = \frac{5}{3}$.

80. (a)
$$T_{r+1} = {}^{18}C_r(\sqrt{x})^{18-r} \left(-\frac{2}{x}\right)^r = {}^{18}C_r x^{9-r/2-r} (-2)^r$$

If T_{r+1} is independent of x, then $9 - \frac{r}{2} - r = 0 \Rightarrow r = 6$.

So term independent of $x = T_7 = {}^{18}C_6 2^6$

81. (c)
$$3^{50} \left(1 + \frac{2x}{3} \right)^{50}$$

$$\therefore \frac{T_{r+1}}{T_r} \ge 1 \Rightarrow 102 - 2r \ge 15r \Rightarrow r \le 6$$

82. (b) We know that
$$\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$

Putting n=15, then $\frac{15 \times (15+1)}{2} = 120$.

83. (c)
$$(1+x)^n = {}^nC_0 + x \cdot {}^nC_1 + x^2 \cdot {}^nC_2 + \dots + x^n \cdot {}^nC_n$$

Put $x = 2$
 $\Rightarrow 3^n = {}^nC_0 + 2 \cdot {}^nC_1 + 2^2 \cdot {}^nC_2 + 2^3 \cdot {}^nC_3 + \dots + 2^n \cdot {}^nC_n$

84. (d) We have
$$C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n (n+1)C_n^2$$

$$= [C_0^2 - C_1^2 + C_2^2 - \dots + (-1)^n C_n^2] - [C_1^2 - 2C_2^2 + 3C_3^2 \dots - (-1)^n nC_n^2]$$

$$= (-1)^{n/2} \frac{n!}{(n/2)!(n/2)!} - (-1)^{(n/2)-1} \cdot \frac{1}{2} n^n C_{n/2}$$

$$= (-1)^{n/2} \cdot \frac{n!}{(n/2)!(n/2)!} \cdot \left(1 + \frac{n}{2}\right)$$

Therefore the value of the given expression is

$$\frac{2(n/2)!(n/2)!}{n!} \times (-1)^{n/2} \cdot \frac{(n)!}{(n/2)!(n/2)!} \left(1 + \frac{n}{2}\right)$$
$$= (-1)^{n/2}(2+n)$$

85. (c)
$$(x+a)^n = {}^nC_0x^n + {}^nC_1x^{n-1}a + {}^nC_2x^{n-2}a^2 + {}^nC_3x^{n-3}a^3 + \dots$$

But by the condition,
 $A = {}^nC_0x^n + {}^nC_2x^{n-2}a^2 + {}^nC_4x^{n-4}a^4 + \dots$
and $B = {}^nC_1x^{n-1}a + {}^nC_2x^{n-3}a^3 + \dots$

Hence
$$AB = \frac{1}{4} \{ (x+a)^{2n} - (x-a)^{2n} \}$$

or
$$4AB = (x+a)^{2n} - (x-a)^{2n}$$

86. (b)
$$(x+a)^n = x^n + {}^nC_1x^{n-1}a + {}^nC_2x^{n-2}a^2 + {}^nC_3x^{n-3}a^3 + \dots$$

= $(x^n + {}^nC_2x^{n-2}a^2 + \dots$

+
$$\binom{n}{n} C_1 x^{n-1} a + \binom{n}{n} C_3 x^{n-3} a^3 + \dots$$

= $P + Q$

$$(x-a)^n = P - Q$$
, As the terms are alter. + ve and -ve

$$P^2 - Q^2 = (P + Q)(P - Q) = (x + a)^n (x - a)^n$$

$$P^2 - Q^2 = (x^2 - a^2)^n$$

- **87.** (c) Putting x=1 in $(1+x-3x^2)^{2163}$. we get sum of the coefficients as $(1+1-3)^{2163}=(-1)^{2163}=-1$.
- **88.** (b) We have $a = \text{sum of the coefficient in the expansion of } <math>(1 3x + 10x^2)^n = (1 3 + 10)^n = (8)^n$ $\Rightarrow (1 - 3x + 10x^2)^n = (2)^{3n}$, [Putting x = 1].

Now, $b = \text{sum of the coefficients in the expansion of } (1 + x^2)^n = (1 + 1)^n = 2^n$. Clearly, $a = b^3$

89. (b) By hypothesis,
$$2^n = 4096 = 2^{12} \Rightarrow n = 12$$

Since *n* is even, hence greatest coefficient
$$= {}^{n}C_{n/2} = {}^{12}C_6 = \frac{12.11.10.9.8.7}{1.2.3.4.5.6} = 924.$$

90. (b) Accordingly,
$$(\alpha - 2 + 1)^{35} = (1 - \alpha)^{35}$$

 $\Rightarrow (\alpha - 1)^{35} = (1 - \alpha)^{35} \Rightarrow \alpha = 1$